
0018-9162/06/$20.00 © 2006 IEEE January 2006 63P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

aircraft functionality provided by software increased
from 8 percent for the F-4 in 1960 to 80 percent for the
F-22 in 2000.1

Although software technologies supporting the devel-
opment of onboard systems have improved significantly
in the past 45 years, whether improvements have kept
pace with the growing demand and complexity that
result from the increasing software functionality remains
arguable. Following current practices, it can take years
or months to make software modifications to space-
based systems at significant cost. This remains true even
though the personnel who develop and maintain
International Space Station and Orbiter software have
discovered ingenious ways to reduce this time and cost.

FUTURE MISSIONS
Missions that NASA’s Exploration Systems Mission

Directorate currently is planning will be less predictable
than past missions. In addition, they often will be of
much longer duration and involve considerably greater
distances. Minute-by-minute communication between
Mars and mission control will be physically impossible
given round-trip communication delays ranging from

NASA is using model-based languages and risk analysis methodologies to raise software

development to the level of hardware development. Ultimately, it hopes to achieve a fusion

of systems and software engineering by replacing conventional software development

techniques with capability engineering, which focuses on a system’s full set of

functionalities.

Daniel E. Cooke
Texas Tech University

Matt Barry
Jet Propulsion Laboratory

Michael Lowry
NASA Ames Research Center

Cordell Green
Kestrel Institute

M any NASA flight systems have been devel-
oped according to an approach that defines
hardware first, then effectively retrofits soft-
ware and human procedures to the hard-
ware systems. Throughout this process, a

careful allocation of functionality handles time-sensitive
operations onboard, while mission controllers on the
ground handle non-time-sensitive operations.

Past missions have been scripted, meaning that engi-
neers developed hardware and software systems to
respond mainly to foreseen circumstances, making them
less able to handle unforeseen problems or exploration
opportunities. The primary responsibility for handling
unanticipated situations resided with humans, either
onboard the spacecraft or in the mission control center.
Clearly, there are times when even time-sensitive con-
cerns are handled on the ground because of the more
substantial human and computer resources available to
address complex problems.

All the software support for onboard and mission con-
trol must be highly dependable, requiring rigorous val-
idation and verification. The US Department of Defense
recently presented data showing that the percentage of

NASA’s Exploration
Agenda and Capability
Engineering

64 Computer

six to 41 minutes, not counting a solar conjunction
between Mars and Earth during which communication
might be impossible for up to three weeks.

Communication delays could drastically impact the allo-
cation of functionality in future missions. Some of the
intellectual safety net that mission controllers and their
computers currently embody will need to accompany the
astronauts onboard. For example, more intelligent soft-
ware that assists the astronauts in discovering
workarounds when systems fail will help in developing
quick onboard solutions to unforeseen problems or in tak-
ing advantage of unforeseen exploration opportunities.

Because of increased software functionality, hardware
developed for future missions will likely be of greater
utility. Thus, systems will be more adaptable for varied
mission scenarios. However, modifying capabilities
between and during missions will require revolutionary
software development approaches.

These observations led to the primary conclusion
reached at a NASA Software Engineering Technology
Workshop held in Houston in April 2004. Participants
in this workshop concluded that model-based software
development—or capability engineering—must replace
conventional software development techniques. In this
approach, engineers and programmers provide direct,
declarative descriptions of problem solutions and mod-
eled systems rather than developing instructions that
implement these algorithms and models.

In its purest form, capability engineer-
ing focuses on a system’s full set of capa-
bilities or functionalities, independent of
whether humans, software, or hardware
support the capabilities. Clearly, this
changes the engineers’ view: They declare
capabilities, study alternative capabilities,
and perform risk analysis at a functional
level, free from the burden of hand-cod-
ing the correct program statements or
human procedures.

ISS SOFTWARE BASELINE REVIEW
Although the International Space

Station does not involve the long dis-
tances planned for future missions, it is at
the very least a long-duration mission. In
addition to correcting and modifying
original capabilities, the ISS software sup-
port team is continually adding new com-
ponents as well as testing and integrating
software provided by our international
partners. Figure 1 shows the growth in
ISS software since 1998.

The ISS software team might have been
ahead of the curve when it comes to capa-
bility engineering and intelligent software
design. The blending of systems engineer-

ing and software engineering figures prominently in the
overall design of ISS systems. From the systems engi-
neering viewpoint, a careful mapping of data elements
from sensors to effectors helps manage every piece of
data. Currently, there are 250,000 named and managed
data elements.

ISS architecture
Figure 2 outlines the software architecture approach

taken in developing the ISS onboard systems. The archi-
tecture isolates the more fundamental onboard capabili-
ties from the display systems, and the displays from the
crew’s laptops. These laptops, called Station Support
Computers, provide task procedures, e-mail access, and
other office capabilities for each crew member. These are
basically noncritical systems running Microsoft Windows.

Tier I of the architecture provides interfaces for com-
mand-and-nontrol mission controllers on the ground and
the crew interfaces to onboard computer software.
Personal computer systems for crew interfaces provide a
separate set of laptops that supply 6,000 display interfaces
for the ISS crew. These displays were developed using a
high-level interface specification language. The isolation
of the interface software from the onboard systems sepa-
rates a significant portion of the changes to systems and
indicates a careful analysis of information flow through-
out the system—mirroring the systems engineering efforts
to manage control data from sensors to effectors.

0

1,000

2,000

3,000

4,000

6,000

7,000

5,000

So
ftw

ar
e

lin
es

 o
f c

od
e,

 th
ou

sa
nd

s
(K

SL
OC

)

1A
/R 2A

2A
.2

b 1R 3A 4A 5A 6A 7A

8A
-R

2 9A 11
A R3 R4

PC
S

R9

12
A-

13
A

EX
T

R5
-1

5A

10
A/

PM
R3

Bl
oc

k
R7

Bl
oc

k
R6

Ju
ly

, 0
5

Japan
Europe
Canada
Russia
US PCS
US ePCS
US MDMs

Figure 1. Growth in International Space Station software. Since 1998, more
than 4 million source lines of code (SLOC) have been added to the ISS onboard
systems. International partners have provided half of the new content.
Although the new content developed outside the US does not figure into the
US portion of the ISS program costs, integrating the new content from non-US
partners does. Current projections indicate that another 3 million SLOC will
be developed by international partners and integrated by the US ISS offices.

Tier II identifies the major onboard systems, written
primarily in Ada. They include

• internal systems to monitor and control the cabin
environment;

• external systems to monitor and control the robotic
arm and a mobile transporter that moves items along
the station’s external spine;

• power management to monitor and control power
distribution and provide fault detection and correc-
tion;

• guidance, navigation, and control (GN&C) systems
to support navigation, attitude determination, and
control;

• payload management to provide support for manag-
ing, controlling, and coordinating onboard payloads;
and

• hub control to support command and data handling
and control of the node 3 caution and warning sys-
tem, secondary electrical power system, remote
power controller modules, common berthing mech-
anisms, the thermal control system’s active and pas-
sive thermal functions, and environmental control
and life support.

Tier III provides component-level software support-
ing the Tier II system elements. These multiplexer/
demultiplexer radiation-hardened 386 microprocessors
manage the data paths from onboard sensors and effec-
tors. All told, the Tier II and III software runs into the
neighborhood of 7 million source lines of code (SLOC).

Its complexity, combined with its criticality, translates
into a daunting effort to maintain and sustain an ever-
changing system. That requirement formulation is not
reflected in the software development costs offers more
evidence that the ISS approach has effectively integrated
systems and software engineering.

ISS change process and costs
Software change requests (SCRs) initiate the three

types of ISS software functionality changes.
One form of change involves the addition of new func-

tionality, including changes required when adding new
station modules. Another change source involves mak-
ing corrections due to code nonperformance—that is,
when requirements are not met. Both of these change
types result in the actual modification of source code.

The third type of change is based on flexibility
designed into the system in the form of pre-position

January 2006 65

B

A
A

A

B
A

Current configuration (11A)
12A–15A (Power fits)
10A–UF-7 (IPs and Node 2)
20A (Node 3)
MPLM Flights

C and T
equipment

Command and
control MDMs

(3)

Crew
interface

processors

HCZ
MDMs

(2)

Internal
MDMs

(2)
APM

processors

RS central
computers

(3)

JEM
processors

MSS
processors

Payload
MDMs

(2)

External
MDMs

(2)

Power
management

MDMs (2)

GNC
MDMs

(2)

Airlock
MDM

(1)

Node 1
MDMs

(2)

US Lab
MDMs

(3)

FGB
MDMs

(2)
S3/P3
MDMs

(4)

PVCU
MDMs

(8)

TR/PTR
MDMs

(2)

S1/SQ/P1
MDMs

(2)

Node 2
MDMs

(2)

Node 3
MDMs

(2)
CAM

MDMs
(2)

Orbiter
interface
units (2)

Orb
PCSRS

GNC
Equip

System
equip

US
GNC
equip
- Rate gyros
- CMGs
- GPSs

(2) (2) (2)
(2) (2) (2)

System
equip FGB

equip

PV array
equip

Pri
power
dist

Pri
power
dist

See
power
dist

Sec power
dist

SSRMS

MBS

SPDM

(4) (6)(4) (4) (1)

MT
equip

External
mechs

SARJ
equip

Thermal
radiator
equip

Ext therm
equip

Sec power
dist

Airlock
equip

CAM
equip

Node 2
equip

Node 1/Z1/P6 equip
See power dist

Assembly and restart
Ops only

US Lab
equip

Node 3
equip

Sec power
dist

Sec power
dist

System
equip

RMS

Payloads

System
equip

Payloads

CHeCS
equip

Internal
payloads

External
payloads

Payload data
sys equip

(6) (4)(6) (4)

ECLSS equip

ITCS equip

IMPLMsIMPLMs

(6) (4)

ECLSS equip

ITCS equip

CRV

ATV

Figure 2. Software architecture outline for ISS onboard systems.The architecture isolates the more fundamental onboard
capabilities from the display systems and the displays from the crew’s laptops.

66 Computer

case, autocoding seemed like the dream solution, poten-
tially reducing staff and development time. Unfor-
tunately, technology limitations kept autocoding from
meeting expectations.

For the front-end design, the selected commercial
autocoder had benefits similar to Matlab, such as intu-

itive input notation for control engi-
neers. However, the quality of the
generated code had limitations that
technology being developed in re-
search laboratories at NASA and
elsewhere might some day overcome.

Limitations in the autocoder-gen-
erated software caused particular
difficulties in the subsequent main-

tenance phase, which is still ongoing for ISS. These prob-
lems include the following:

• Engineers found it difficult to navigate through the
generated code from one hierarchical level to the
next to find a function specified in the input. Due to
the deep nesting, they even struggled to determine
the code’s inputs and outputs.

• Maintenance proved particularly difficult. Estimated
time for updating code for the autocoder was at least
a factor of five compared to updating functions man-
ually coded in Ada. Adding comments to the code was
also difficult, which further hampered maintenance.

• The autocoder produced voluminous nonoptimized
code—as much as three times the number of source
lines—compared to manually developed code. The
code expansion factor poses a particular problem in
space applications. Making commercial computers
robust for radiation tolerance takes five years or more;
it also typically makes them an order of magnitude
less powerful in terms of speed and memory than the
workstations on which developers prototype the soft-
ware.

• The initial concern that autocoding’s opacity would
make it difficult to achieve a human rating of the soft-
ware, which is in essence a tolerance for two succes-
sive faults, did not turn out to be a limiting factor
except for the understanding and maintenance issues.

Model-based approaches have improved significantly
since the ISS software’s initial development several years
ago, and software architecture and design are now much
better understood. Although NASA and aerospace
researchers are often at the forefront in developing
advanced software technologies, there remains a healthy
and probably appropriate tension between the desire to
take advantage of new technologies on aircraft or space-
craft and the time- and safety-critical requirements of
the onboard systems. Once space-based systems are
deployed and trust in them is gained, wholesale changes
to them often become infeasible.

loads. The 1,473 PPLs serve as parameters that software
developers can use to tweak performance and modify
some forms of functionality. Handling changes with the
PPLs reduces the need for traditional modifications that
require code changes.

Since deployment of the onboard ISS software, an esti-
mated 30,000 SCRs have been
processed. All told, roughly 865 soft-
ware change requests were processed
last year, costing $47 million in devel-
opment costs and $21 million in soft-
ware integration costs. Thus, on
average, a software change, including
a PPL, costs around $78,000. This
amount does not cover the SLOC
produced by international partners—or, more precisely,
it includes the cost of integration but not the cost of pro-
ducing the new content.

ISS EXPERIENCE WITH MODEL-BASED
PROGRAMMING

Aerospace applications use model-based prototyping
extensively. In particular, developers often prototype con-
trol applications in commercial environments such as
Matlab/ Simulink, then validate them in simulation envi-
ronments. These model-based prototyping environments
enjoy widespread use in part because they provide an intu-
itive language interface for aerospace engineers. This
interface is often a block-and-arrow visual input format
similar to traditional block-diagram notations used in
control and systems engineering.

Production-quality program synthesis is the keystone
for full life-cycle model-based programming. Without
this capability, model-based programming is limited to
being a prototyping tool whose utility ends after detailed
design, when the production code is developed manu-
ally. Further, any subsequent upgrade or maintenance
fix must be made manually, directly on the software.

In our experience, developers seldom make the addi-
tional effort to maintain the prototype. They are reluc-
tant to retain more than one artifact during maintenance
upgrades; even maintaining documentation in synchro-
nization with the executable code is time-consuming.

Some deployed aerospace software systems, includ-
ing a portion of the ISS’s GN&C software, have used
program synthesis, also called autocoding. ISS pro-
grammers report that the experience with the current
generation of commercial autocoding technology has
been mixed. During the ISS software development, engi-
neers cordoned off two portions of the ISS software
for an autocoder in hopes of saving time and money:
attitude control, specifically pointing, control, and guid-
ance-monitoring of the gyros; and truss software, includ-
ing power.

For these functions, GN&C-knowledgeable ISS engi-
neers developed and maintained the code in Ada. In this

Production-quality program
synthesis is the keystone for
full life-cycle model-based

programming.

Developing a cautiously aggressive
approach to the use of model-based
software development in the deploy-
ment of onboard systems remains an
important goal. Only through sound
and assured approaches that permit
the rapid change of software will
NASA be able to modify capabilities
to address a potentially rapidly
changing exploration environment.

FUTURE MODEL-BASED
APPROACHES

Rapidly and dependably modifying
onboard capabilities for future mis-
sions requires fully developed model-
based development approaches. Engi-
neers can use the approaches that
NASA is currently studying and test-
ing to prototype and develop less
time-critical systems on the ground
and onboard.

In the domain-specific approach to
model-based software development,
domain-specific languages play a cru-
cial role. Two examples help illus-
trate this approach: the AutoSmart
system for developing Java Card
applications using the SmartSlang
domain-specific language (www.
kestrel.edu/jcapplets)2,3 and a domain-
specific approach to flight-software
development based on the state analy-
sis modeling approach developed by
JPL using the Mission Data Language
(MDL), a domain-specific language
for formalizing state analysis.

AutoSmart
This effort includes a code generator

that produces code along with a proof
that the code is correct. Researchers are
now leveraging the technology devel-
oped for AutoSmart and applying it to
flight software.

Developed by Alessandro Coglio
and colleagues at the Kestrel Institute,
AutoSmart illustrates a very high-
assurance, semantic, and proof-ori-
ented approach to model-based soft-
ware generation. At the AutoSmart
system’s heart is SmartSlang, a domain-specific language
for smart card applications.

Figure 3 shows a fragment of a SmartSlang spec that
has specialized syntax for commands, responses, cryp-
tography, and application protocol data units (APDUs)—

all typical smart card concepts. APDUs are an ISO-stan-
dardized, low-level, byte-oriented format for encoding
commands to and responses from a smart card.

The fragment declares a command that takes a mes-
sage as argument and returns the result of applying an

January 2006 67

Figure 3. SmartSlang spec and corresponding Java Card code. The fragment of
a SmartSlang spec above the arrow shows specialized syntax for commands,
responses, cryptography, and application protocol data units (APDUs)—all
typical smart card concepts.

68 Computer

RSA private key to it—whose declaration is not
shown—for signature or decryption. The command per-
forms this operation only if an earlier verification of a
PIN via another command—not shown—succeeded;
otherwise, it returns an error response. The apdu line
specifies how the command is encoded as an APDU.

AutoSmart automatically generates Java Card applets
from SmartSlang specs. The term applet here does not
refer to Web-browser applets, but means any applica-
tion installed on a smart card. AutoSmart first performs
several consistency checks on the input SmartSlang spec
involving automated reasoning such as linear arithmetic,
then it translates the spec into Java Card code.

In Figure 3, the code corresponding to the SmartSlang
fragment is below the arrow. The code performs the
inverse of the encoding specified in the spec’s apdu line—
that is, it decodes the command from the APDU, which
is accessible as a byte array via the Java Card API. Based
on the first two bytes, it dispatches control to the method
privSignDecrypt. The method retrieves the rest of the
APDU and checks its conformance to the encoding spec-
ified in the apdu line. The cryptographic operation is
realized via calls to the Java Card API.

Given that smart cards have limited memory and that
the Java Card does not support garbage collection,
applets should not allocate new objects dynamically dur-
ing normal computation: Applets should instead allo-
cate all objects statically in advance and reuse them
during normal computation. The first few lines of the
generated code in Figure 3 show the declaration and the
preallocation of the objects needed to realize the
privSignDecrypt command.

The code that AutoSmart generates is not artificially
verbose; on the contrary, AutoSmart’s developers care-
fully engineered it to produce code close to what a
human developer would write. This is possible because
of SmartSlang’s domain specificity: SmartSlang captures

smart card concepts that the AutoSmart system trans-
lates to the Java Card coding idioms typically used in
handwritten code. The result is a three- to four-times
expansion of code size from SmartSlang to Java Card.

Figure 4 shows the series of correctness-preserving trans-
formation steps that AutoSmart uses to translate Smart-
Slang into Java Card. The source and target languages’
semantics, SmartSlang and Java Card, have been formal-
ized so that each SmartSlang spec and Java Card program
has a representation in the same logical language.

The two representations can be formally compared to
prove that the SmartSlang spec and the Java Card pro-
gram have the same observable behavior, where the
observable behavior of a smart card application is the set
of all possible traces of command-response exchanges in
time. Specware,4 Kestrel’s system for formal software
development, formalizes the semantics of both SmartSlang
and Java Card. Metaslang, the Specware specification lan-
guage (www.specware.org), is based on higher-order logic,
and has similarities to the functional language ML and
the languages of the theorem provers PVS and HOL.

For each transformation refinement that AutoSmart car-
ries out, the system automatically generates an associated
correctness proof. This proof establishes that the output
is correct with respect to the input, which applies to inter-
mediate stages in the translation, not just to the end points.
Kestrel is completing the process of having AutoSmart
generate a proof of the code’s correctness with respect to
the spec, along with an applet’s Java Card code, as Figure
4 shows. AutoSmart constructs the proof stepwise as it
applies transformations. Thus, the fully automatic trans-
formation process guides the proof’s construction.

The proof is expressed in Metaslang, is machine-
amenable, and can be checked by a proof checker for the
Metaslang logic. Thus, we can be confident about the
correctness of an applet that AutoSmart generates with-
out necessarily having confidence in AutoSmart itself.

As Figure 4 shows, the simple checker, which is much
smaller and simpler—and therefore easier to trust—than
AutoSmart, can check the proof, spec, and code. The
checker’s core is the Metaslang proof checker, comple-
mented by two simple encoders that map the SmartSlang
spec and the Java Card program into their Metaslang
representations.

The checker first checks the proof for validity, then
uses a simple syntactic comparison to verify that the
conclusion of the proof is indeed the formula stating the
behavioral equivalence of the given SmartSlang spec and
Java Card program. If the proof for a particular applet
is valid, then the applet is correct, no matter how many
bugs the generator may have. Moreover, the validity of
a proof does not depend on the party that produced it.

Mission Data Language
The underlying technology used for SmartSlang is

now being applied to MDL, which was developed under

AutoSmart

Checker

Applet
code

Applet
code

Proof

Yes/no

Figure 4. Provable correctness of AutoSmart transformations.
A series of correctness-preserving transformation steps
achieve AutoSmart’s translation of SmartSlang into Java Card.

the joint leadership of the Kestrel Institute’s Lindsay
Errington and Kestrel Technology LLC’s Allen
Goldberg. State analysis is an approach to designing
integrated flight, ground, and test systems defined within
the Mission Data System project at JPL. MDS seeks to
provide an architectural framework that captures best
software and system engineering practice supported by
a reusable code base.

MDS, a state-based architecture, has the state capture
relevant time-varying properties of a system under con-
trol, such as position, temperature, pressure, resource
levels, device modes, and health status, as well as exter-
nal environmental conditions. State
variables represent components of
the state—for example, the state of
a battery’s charge. The value held in
a state variable is a function that
gives an estimate of the state vari-
able’s value in the past, present, and
future, along with an estimate of its
certainty of accuracy. Such a time-
varying function is called a state function.

Separation of estimation and control is a key MDS
architectural principle. Traditional flight architectures
achieve control by issuing sequences of commands to
actuators that, hopefully, result in attaining some desir-
able goal.

MDS achieves control by directly stating goals—that
is, constraints on state variables and, in particular, con-
straints on their future values. Such goals are achieved
through goal elaboration—the breakdown of a goal into
a set of lower-level goals that represents one possible
way of achieving the high-level goal.

The lowest level goals, those a controller can directly
achieve without further decomposition, are known as
executable goals (XGoals). For example, specifying a
location for a planetary rover to move to is a high-level
goal, requiring route planning, resource management,
and so forth; specifying a desired rotational velocity for
a wheel is an XGoal.

MDL source language.With MDL, a formal domain-
specific language for expressing the objects and prod-
ucts of state analysis, users can define appropriate types
and instances. For example, to model a six-wheeled
rover, a user may specify a type such as a wheel-rotation
estimator and then define six instances of that type.
Initially, in conjunction with high-level state analysis, a
user might just specify entities and their dependencies.
For example, the wheel-rotation estimator for one wheel
could depend on the state variables for the other wheels
and measurements from hardware adapters for the
wheels.

Users can state such dependencies without specifying
the precise algorithm for producing the state function
the estimator uses. The code generated then contains
stubs that invoke the estimation algorithm where needed.

MDL provides a Matlab-like language for describing
the behavior of estimators and controllers. The language
also allows the declaration of physical units such as
those for mass, velocity, or voltage; design-time check-
ing of units for conformity; and automatic design-time
those coercions—for example, conversions between
radians and degrees. In the future, we will extend this
notion to conversions between reference frames used to
describe positions on or near planets and other bodies
and in deep space.

The architectural concepts behind MDL have no coun-
terparts in Matlab, Simulink, Stateflow, or UML, although

some could be naturally represented
in Simulink. MDL anticipates the use
of other modeling notations to
describe the behavior of estimators
and controllers and is designed so that
Matlab models can be integrated.
Thus, MDL combines the familiarity
of Matlab with the advantage of hav-
ing a formal semantics.

The appropriate modeling notations for estimators
and controllers depend on the system being modeled,
but various common modeling notations are used for
flight software: state machines, which are often used for
discrete devices; differential equations; Kalman filters;
and so forth. We expect future versions of MDL to sup-
port these modeling notations.

MDL operational semantics. MDL has an executable
operational semantics. Thus, developers can simulate
and experimentally validate an MDL specification. MDL
semantics, based on a hybrid message-passing and a syn-
chronous architecture, run estimators, controllers, and
hardware adapters periodically. When a component exe-
cutes, it examines message queues for messages sent to it
by other components. It can then generate a message for
another component, further driving the simulation.

MDL code generation. Java, the target language for
code generation from MDL, is not the traditional lan-
guage of choice for flight software. On the positive side,
Java offers productivity advantages and a growing set
of trained programmers, libraries, middleware, and tools
that make it an attractive development platform.
However, until recently, its weak semantics for real-time
computation, lack of support for low-level device con-
trol, and unpredictable and potentially large time delays
introduced by garbage collection, all made Java unsuit-
able for hard real-time applications.

The Real-Time Specification for Java has addressed
these shortcomings. The RTSJ JVM significantly extends
the common Java virtual machine, and it includes a pre-
emptive, priority-based scheduler with mechanisms to
prevent priority inversion; asynchronous event handling;
high-resolution timers; and an explicit memory-man-
agement scheme that lets Java execute safely without a
garbage collector. Currently available commercial RTSJ

January 2006 69

Separation of estimation
and control is a key

Mission Data Systems
architectural principle.

70 Computer

implementations, with extensive RTSJ APIs, support
many styles of real-time computation.

For hard real-time applications such as MDS control
loops, garbage collections introduce unacceptable
delays. Thus, they must use scoped memory—RTSJ’s
explicit memory management feature. Initial experience
with scoped memory has shown that programmers find
it subtle and difficult to use. However, the MDL code
generator hides this complexity, defining all needed
memory scopes and performing the required copying of
data from memory scopes with different lifetimes.

The MDL code generator targets a straightforward
runtime architecture. Each component instance runs
as an RTSJ no-heap real-time
thread. Rate-monotonic analysis
based on specified periods deter-
mines thread priority, and each
thread has a scratch memory scope.
Long-lived state information—for
example, state variables—is stored
in the RTSJ JVM’s immortal
memory.

The generated code conforms to
efforts to define a safety-critical subset of RTSJ that
restricts language use to the common idioms used within
the safety-critical community, mainly commercial avion-
ics. This will facilitate bootstrapping a community of
Java users and enable FAA certification for reasonable
cost. We estimate the code expansion from MDL to Java
to be a factor of from 3 to 4.

Code correctness. The approach used to show the
correctness of the transformation from SmartSlang to
Java Card can also establish the correctness of the code
generation from MDL to RTSJ.

Specifically, this involves describing the semantics of
MDL and RTSJ in Metaslang, leveraging the substan-
tial commonalities with the Java Card semantics already
developed. The common aspects include object and byte-
code representation, JVM instruction semantics, and
internal JVM data structures.

We have defined a notion of behavioral equivalence
between the MDL source spec and the Java target code:
They are behaviorally equivalent if they generate the
same set of commands to hardware actuators within
simulated time. We can at best give conditional guaran-
tees for real-time performance, since this depends on the
implementation of RTSJ.

While many modeling languages serve to produce
throwaway prototypes, the code produced for
SmartSlang and MDL is intended for production and
should be as efficient as handcrafted code. Both DSLs
remove the effort of dealing with fairly low-level but
nontrivial problems, such as data marshalling, schedul-
ing, and memory management—all well-known error-
prone tasks when done by programmers. The code
generators utilize schedulability analysis, symbolic arith-

metic reasoning, and other analyses that go beyond con-
ventional compiler technology.

Indeed, using a well-tested generator to generate code
automatically provides greater assurance than manual
coding, and having the generator produce an inde-
pendently checkable proof provides even greater assur-
ance, overcoming any concerns about the generator’s
soundness.

GENERAL-PURPOSE LANGUAGES
To address future needs, NASA is also studying new

general-purpose languages such as SequenceL for the
rapid development and deployment of onboard systems.

SequenceL is a small, Turing-com-
plete, and executable language com-
prised of eight grammar rules.5-8

In SequenceL, a simple semantic
called the Normalize-Transpose-
Distribute (NTD) discovers and auto-
matically generates most iterative
and nested iterative algorithmic
structures. Because SequenceL syn-
thesizes the structures in a consistent

and provably correct manner, it effectively avoids many
programming errors and saves considerable time and
expense. Although SequenceL is a general-purpose lan-
guage, it has proven to be similar to the languages NASA
engineers use when developing the requirements for
GN&C.

As a proof of concept, a SequenceL version of a
GN&C decision-support system—the Shuttle Abort
Flight Management (SAFM) system—will be tested on
the Shuttle Engineering Simulation Environment at
Johnson Space Center later this year. It took six months
of full-time effort for one GN&C engineer to complete
the original SAFM prototype, which was designed by a
GN&C team at JSC. Once the system was validated, the
team turned over the requirements document to General
Dynamics to develop the flight-certified code, which
took roughly two years to complete and cost approxi-
mately $8 million.

Future missions will require quick and dependable
means to modify systems—means that current software
development approaches do not fully afford. Mission
capabilities will require rapid modifications between
and, more importantly, during missions. To address
these concerns, we are currently demonstrating that
SequenceL can be used for the identification and vali-
dation of GN&C requirements.

Working mainly with the requirements documents, and
with minimal contact with the JSC GN&C engineers,
SequenceL specifiers have developed an understanding
of the requirements and elaborated and validated them
in SequenceL with six weeks of one person’s full-time
effort. Thus, in our initial experiment, we completed the
requirements review and produced a working prototype

NASA is studying new
general-purpose languages
for the rapid development

and deployment of
onboard systems.

in SequenceL in one-fourth the time it took the GN&C
engineers for the original SAFM development.

As Figure 5 shows, the major change in the SequenceL
version of the requirement is adding the definition of
matrix multiply, mmrow, and dotProd, and adding
nested ()’s to denote the rows of the matrix. Since matrix
computations (including matrix multiply) are the gist of
the requirement, the SequenceL NTD semantic performs
all the work in terms of generating the procedural

aspects of the problem solution. Using SequenceL, the
specifier does not have to engage in the error-prone
efforts involved in coding the nested iterative control
structures, nor is it necessary to manage the matrix sub-
scripts—also an error-prone activity.

With languages like SequenceL, engineers can focus
their attention on requirements without manufacturing
the procedural algorithms that satisfy those require-
ments. Languages that correctly synthesize codes will be

January 2006 71

Figure 5. (a) Example requirement from the Shuttle Abort Flight Management system requirements document. (b) Executable
SequenceL version of the requirement.

3.7.4.13.1 Functional Requirements
3.7.4.13.1.1 The signature of the Earth Fixed to Runway Transformation utility shall be as follows:

M_EFTo_Rw = EF_TO_RUNWAY(Lat, Lon, RW_Azimuth)

3.7.4.13.1.2 The Earth Fixed to Runway Transformation utility shall perform the following algorithm:

Cos(RW_Azimuth), Sin(RW_Azimuth), 0

M = -Sin(RW_Azimuth), Cos(RW_Azimuth), 0

0 0 1

-Sin(Lat) * Cos(Lon), -Sin(Lat) * Sin(Lon), Cos(Lat)

MEFTopdet = -Sin(Lon), Cos(Lon), 0

-Cos(Lat) * Cos(Lon), -Cos(Lat) * Sin(Lon), -Sin(Lat)

M_EF_To_Rw = (M) • (MEFTopdet)
Rationale: M is the Topodetic to RW matrix.

M_EF_To_Rw(Lat,Lon,Rw_Azimuth) ::= mmrow,
((Cos(RW_Azimuth), Sin(RW_Azimuth), 0),

(-Sin(RW_Azimuth), Cos(RW_Azimuth), 0),

(0 0 1)

),
((-Sin(Lat) * Cos(Lon), -Sin(Lat) * Sin(Lon), Cos(Lat)),

(-Sin(Lon), Cos(Lon), 0),

(-Cos(Lat) * Cos(Lon), -Cos(Lat) * Sin(Lon), -Sin(Lat))
)

When one adds a two line SequenceL definition for Matrix Multiply:
mmrow: [s] * [[s]] -> [[s]] mmrow(a,b) ::= dotProd(a,transpose(b))
dotProd: [s] * [s] -> s dotProd(x,y) ::= sum(x * y)

(a)

(b)

72 Computer

essential for realizing rapid development and depend-
able deployment capabilities.

RISK MANAGEMENT FOCUS
A focus on capability engineering must also improve

the engineering discipline of software project manage-
ment to meet or exceed that of hardware project man-
agement. Software is almost entirely a design artifact,
yet today few tools are available to support risk analy-
sis of that design, simulate design tradeoffs, implement
safety design factors, and analyze design scalability. Cost
and schedule estimation tools are often inaccurate and,
owing to historical calibrations, fail to keep pace with
the rapidly increasing allocation of system functional-
ity to software.

Defect estimation models similarly are grounded in
historical practice, not accounting
for technologies inserted at each step
in the life cycle to either decrease
defect introduction or increase defect
removal. Designing quality in at the
development cycle’s beginning is far
more effective in terms of cost and
dependability than testing in quality
at the development cycle’s end.

Tools employing domain-specific
languages to facilitate communica-
tion, enforce proper requirements
elicitation, examine coupling in design features, produce
provably correct models, and link verification tests to
specifications will increase quality at the development
cycle’s beginning. Formal models of specifications, safety
requirements, domain knowledge, and implementation
knowledge enable rigorous analysis to enhance upfront
quality.

Practices that put software on an equal footing with
hardware, such as JPL’s state analysis practice, ensure that
software and hardware designs evolve together and trace
decisions leading to functional allocation without the con-
text loss of traditional hierarchical decompositions.9

Developers need quantitative measures of design qual-
ity and runtime performance to demonstrate the system
candidate’s trustworthiness and make trades against
measures that stakeholders deem important for safety-
critical systems. Such measures also support a statisti-
cal statement of system risk exposure given the inherent
uncertainty in the exploration environment.

To summarize the differences between hardware and
software development, we offer the following points:

• Software does not wear out. Therefore, safety fac-
tors for software are not measured as easily as they
are for hardware—for example, if a mechanical
switch needs to function 1,000 times, we can develop
a switch with a factor of safety to double or triple
its lifetime.

• Hardware risk analysis can be done early. It can be
performed at the requirements or design level because
manufacturing of the hardware can be accomplished
with degrees of certainty that exceed those involved
in software manufacturing.

• Software’s incremental production costs are virtually
nil. This is the one factor already in software’s favor—
particularly with the current promise of automatic
prototyping. Although we can learn how to improve
hardware design through experimentation and expe-
rience in the production phase, we learn nothing
about how to improve a software design by creating
one more copy.

S oftware development will not
achieve the level of hardware
development without the intro-

duction and use of model-based lan-
guages. Further, model-based devel-
opment will not be widely accepted
without risk analysis methodologies
on a par with those employed in
hardware development.

Current software practices will
not admit risk analysis strictly at the
design phase because too much risk
and uncertainty remain in the imple-

mentation and verification of the software—the manu-
facturing phase.

Model-based approaches that synthesize correct
codes vastly reduce, if not eliminate, the risks associ-
ated with hand-coding the systems to be deployed.
Thus, risk analysis can be focused at the requirements
level because the requirements themselves reside in the
software.

Once model-based approaches demonstrate an ability
to perform risk analysis at the same level as hardware
risk analysis, they will likely be more widely accepted.
When hardware and software are on a somewhat equal
footing, the ultimate fusing of software and systems
engineering can be accomplished, and we can focus
more on capabilities and less on whether a human, pro-
gram, or piece of hardware provides a capability.

Finally, we will most likely see safety factors realized
in model-based approaches. For example, designers of a
system component that performs some action can either
assume that the action has been performed or they can
measure and specify the costs involved in instrumenting
the environment to verify the effects of the action. ■

Acknowledgments
Parts of this work were supported by NASA-

NNG05GP48G and NASA-NNA05CR24C. We thank
Susan Creasy, Kevin Window, Marcia Kerr, Howard Hu,

Model-based
approaches

that synthesize correct
codes reduce the risks

associated with
hand-coding systems.

Alessandro Coglio, Lambert Meertens, Allen Goldberg,
and Matthias Anlauff for contributions to various sec-
tions of the article.

References
1. Defense Science Board, “Report of the Defense Science Board

Task Force on Defense Software,” Nov. 2000, Office of the
Under Secretary of Defense for Acquisition and Technology,
Washington, D.C.

2. A. Coglio and C. Green, “A Constructive Approach to Cor-
rectness, Exemplified by a Generator for Certified Java Card
Applets,” Proc. IFIP Working Conf. Verified Software: Tools,
Techniques, and Experiments, 2006, to appear; vstte.ethz.ch/
Files/coglio-green.pdf.

3. A. Coglio, “Toward Automatic Generation of Provably Cor-
rect Java Card Applets,” Proc. 5th ECOOP Workshop For-
mal Techniques for Java-like Programs, 2003, tech. report
408, ETH Zürich, n.pag.; www.cs.ru.nl/ftfjp/2003/15.pdf.

4. “Specware User Manual,” Kestrel Institute and Kestrel Tech-
nology LLC, 2004; www.Specware.org/doc.html.

5. D.E. Cooke and V. Kreinovich, “Automatic Concurrency in
SequenceL,” Science of Computer Programming, vol. 42, no.
1, 2002, pp. 115-128.

6. D.E. Cooke and J.N. Rushton, “Normalize, Transpose, and
Distribute: A Basis for the Decomposition and Parallel Eval-
uation of Nonscalars,” to be published in ACM Trans. Pro-
gramming Languages and Systems, 2006.

7. D.E. Cooke and J.N. Rushton, “SequenceL—An Overview of
a Simple Language,” Proc. Int’l Conf. Programming Lan-
guages and Compilers (PLC 05), 2005, pp. 64-70.

8. D. Cooke et al., “Application of Model-Based Technology
Systems for Autonomous Systems,” Proc. Infotech@Aero-
space, AIAA-2005-7063, Infotech@Aerospace, 2005.

9. D. Dvorak, R. Rasmussen, and T. Starbird, “State Knowledge
Representation in the Mission Data System,” Proc. 2002
IEEE Aerospace Conf., IEEE Press, 2002.

Daniel E. Cooke is a professor in the Department of Com-
puter Science, Texas Tech University. His research interests
include declarative languages, program synthesis, and pro-
gram verification. Cooke received a PhD in computer sci-
ence from the University of Texas at Arlington. Contact him
at dcooke@coe.ttu.edu.

Matt Barry is the program director for Surface Support Sys-
tems at the Jet Propulsion Laboratory. His research inter-
ests include technology selection, artificial intelligence, and
systems engineering. Barry received a PhD in computer sci-
ence from Rice University. Contact him at matthew.r.barry@
nasa.gov.

Michael Lowry is the head of the Robust Software Engi-
neering Group at the NASA Ames Research Center. His
research interests include program synthesis, automated ver-
ification and validation, and automated software engineer-
ing. Lowry received a PhD in computer science from
Stanford University. Contact him at michael.r.lowry@
nasa.gov.

Cordell Green is the director of the Kestrel Institute. His
research interests include knowledge-based tools for soft-
ware engineering and automated software design and syn-
thesis. Green received a PhD in electrical engineering from
Stanford University. He is a Fellow of the ACM and a mem-
ber of the IEEE. Contact him at green@kestrel.edu.

January 2006 73

Learn how others are achieving systems and networks design and
development that are dependable and secure to the desired
degree, without compromising performance.

This new journal provides original results in research, design, and
development of dependable, secure computing methodologies,
strategies, and systems including:

• Architecture for secure systems
• Intrusion detection and error tolerance
• Firewall and network technologies
• Modeling and prediction
• Emerging technologies

Publishing quarterly
Member rate: $31
Institutional rate: $285

Learn more about this new
publication and become a
subscriber today.

www.computer.org/tdsc

IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING

